

Appendix A Detailed Technology Assessment

BAT Consideration	Moving Grate	Fluidised Bed	Rotary Kiln Pyrolysis (Wastegen System)	Tube Pyrolysis (Compact System)	Gasification
Operational Considerations					
Conversion Efficiency (%)	83	83	-	75	-
Generation Efficiency (%)	31	31	-	22	-
Overall Gross Efficiency (%)	26	26	-	16	-
Site Power Use (%)	12	12	-	14	-
Overall Net efficiency (%)	23	23	20 – 25	14	14 – 24%
Emissions Control	 SNCR or SCR 	 SNCR or SCR 	 Lime in feed 	 Bag filter 	 Depends on system
	 Spray absorber 	 Spray absorber 	 SNCR 	 Sodium bicarbonate 	chosen.
	 Fabric filter 	 Fabric filter 	 Fabric filter 	injection	
	 Lime injection 	 Lime injection 	 PAC injection 	 SCR with ammonia or 	
	 PAC injection 	 PAC injection 	 Sodium bicarbonate 	SNCR	
			injection		
Site Considerations					
Available Space/Location	 Typically 2.5 - 3.5 ha 	 Typically 2.5 - 3.5 ha 	 Typically 1.5 - 4 ha 	 Typically 1.5 - 4 ha 	 Typically 0.5 - 6 ha
Staffing	 30 -55 persons for plants 	 30 -55 persons for plants 	 30 – 40 persons for plants 	 30 – 40 persons for plants 	 30 – 40 persons for plants
	ranging 250,000 –	ranging 250,000 -	up to 250,00tpa	up to 250,00tpa	up to 250,00tpa
	450,000 tpa	450,000 tpa			
Environmental Impact					
Emissions to air	-		-	•	
Dust	<1	<1	1	2	0.01 -2
Sulphur dioxide	20	20	20	<1	1 – 30
Oxides of nitrogen	<200	<200	167	<37	37 – 167
Carbon monoxide	<5	<5	<10	<2	0.1 – 10
Dioxins & furans	0.03	0.03	0.001	<0.003	0.0009 - 0.03
HCI	7	7	5	2	1.2 – 5
HF	<0.2	<0.2	Below detection	<0.1	0.008 – 0.15
TOC	<3	<3	1.6	1	1 – 1.6
Hg	0.004	0.004	0.011	0.006	0.0001 – 0.01
Cd & TI	<0.001	<0.001	0.006	0.006	0.0002 - 0.006
Metals	<0.2	<0.2	0.054	0.006	0.006 - 0.054
Emissions to water	Depends on boiler water	Depends on boiler water	Depends on boiler water	Depends on boiler water	Depends on boiler water
	treatment and cooling	treatment and cooling	treatment and cooling	treatment and cooling	treatment and cooling
Noise and vibration	Can be controlled with	Can be controlled with	Can be controlled with	Can be controlled with	Can be controlled with
	appropriate abatement	appropriate abatement – due	appropriate abatement – due	appropriate abatement – due	appropriate abatement – due
		to re-treatment more	to re-treatment more	to re-treatment more	to re-treatment more
		abatement may be needed	abatement may be needed	abatement may be needed	abatement may be needed
Odour	Typically avoids nuisance	Typically avoids nuisance –	Typically avoids nuisance –	Typically avoids nuisance –	Typically avoids nuisance –
		pre-treatment creates more air	pre-treatment creates more air	pre-treatment creates more air	pre-treatment creates more air
		movement that may need	movement that may need	movement that may need	movement that may need

BAT Consideration	Moving Grate	Fluidised Bed	Rotary Kiln Pyrolysis	Tube Pyrolysis	Gasification
			(Wastegen System)	(Compact System)	
		additional consideration	additional consideration	additional consideration	additional consideration
Visual impact	 Stack height dependant on the location/technology Typical building height is 40m 	 Stack height dependant on the location/technology Typical building height is 40m 	 Stack height dependant on the location/technology Typical building height can be reduced to around 15m if CHP engine used 	 Stack height dependant on the location/technology Typical building height can be reduced to around 15m if CHP engine used 	 Stack height dependant on the location/technology Typical building height can be reduced to around 15m if CHP engine used
Residue Generation	 Bottom ash (200 – 300 kg/te) APC residues (30 – 60 kg/Te) Hazardous 	 Pre-treatment may produce residue for disposal/recycling Bottom ash (200 – 300 kg/te) APC residues which may be higher than moving grate due to ash carry over. 	 Pre-treatment may produce residue for disposal/recycling Slag (200 – 300 kg/te) APC residue (~20 – 50 kg/Te) 	 Pre-treatment may produce residue for disposal/recycling Slag (200 – 300 kg/te) APC residue (~20 - 50 kg/Te) 	 Pre-treatment may produce residue for disposal/recycling Bottom ash (200 – 300 kg/te) APC residue (~20 – 50 kg/Te)
Economic Considerations F					
Capital Cost	~ £50 – 64m	~ £50 – 64m	~ £19 – 93m	~ £19 – 93m	~ £19 – 93m
Operating Cost	~ £30 – £45/tonne	~ £30 – £45/tonne	~ £35 – £45/tonne	~ £35 – £46/tonne	~ £35 – £46/tonne
Environmental Benefit					
Energy Recovery	Power generated from waste is not considered renewable unless accepted as a good quality CHP, then the biomass fraction becomes eligible.	Power generated from waste is not considered renewable unless accepted as a good quality CHP, then the biomass fraction becomes eligible.	If accredited as advanced thermal technology the power generated from the biomass fraction is eligible for support under ROCs	If accredited as advanced thermal technology the power generated from the biomass fraction is eligible for support under ROCs	If accredited as advanced thermal technology the power generated from the biomass fraction is eligible for support under ROCs
Product Recovery	 Potential for bottom ash to be recycled 	 Potential for bottom ash to be recycled May recover other materials during pre- treatment 	 Potential for bottom ash to be recycled May recover other materials during pre- treatment 	 Potential for bottom ash to be recycled May recover other materials during pre- treatment 	 Potential for bottom ash to be recycled May recover other materials during pre- treatment

(1) Costs taken from "An Introduction To Waste Technologies", 2008 Edition, Waste Technologies UK Associates.